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1. Introduction

One of the surprising results of supergravity is that the Kaluza-Klein reduction of the

maximal 11-dimensional theory on a d-torus yields the exceptional hidden symmetry groups

Ed(d) for 6 ≤ d ≤ 9 [1]. This has led to the conjecture that the over-extended and very-

extended Kac-Moody algebras E10 [2 – 5] and E11 [6 – 12] may be of relevance for the original

theory or, more optimistically, be even the ultimate symmetry of M-theory.

Recently, it has been shown that E11 (and to some extend also E10) contains informa-

tion about the possible deformations of supergravity into gauged or massive supergravities

[13 – 16]. More precisely, a level decomposition shows that the spectra of E11 and E10

contain (D − 1)-form potentials that, via duality, are in precise correspondence with the

embedding tensor Θ introduced in [17, 18] for maximal gauged supergravity in D = 3 (and

subsequently generalized to higher dimensions in [19 – 27]). In addition, the spectrum of

E11 contains D-form potentials that are in part related to quadratic constraints on the

embedding tensor [15, 27].

The embedding tensor approach is based on the introduction of a tensor Θ that is

in a particular representation of the duality group and which encodes the gauging. A

special feature of the three-dimensional maximally supersymmetric case is that all bosonic

matter fields can be dualized to scalars leading to a 128-dimensional E8(8)/SO(16) coset

space. However, to gauge a subgroup of the duality group one needs to introduce vectors

as well. It was shown in [17, 18] that this can be achieved by a topological term of the form

ΘA∂A+Θ2A3, where A are the gauge vectors, which in turn do not lead to new degrees of

freedom. In higher dimensions, a whole hierarchy of p–form potentials with 0 ≤ p ≤ D − 2

is introduced [23, 27]. It is a generic feature of this hierarchy that the gauge algebra can

be closed off-shell.
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For consistency the embedding tensor has to satisfy a set of quadratic constraints.

Given a gauged supergravity theory containing the constant embedding tensor one can

promote this tensor to an unconstrained scalar field Θ(x) by adding to the original La-

grangian Lg a further topological term containing the deformation and top-form potentials

as Lagrange multipliers in the following way [15, 27]:

L = Lg + A(D−1)∂Θ + A(D)ΘΘ , (1.1)

where we have suppressed the duality and space-time indices. These extra potentials com-

plete the hierarchy of potentials to include all p–forms with 0 ≤ p ≤ D. There is, however,

a subtlety with the bosonic gauge transformations of these new potentials. The gauge-

invariance of the original Lagrangian Lg will be violated by terms proportional to either

∂Θ or Θ2. Such terms can always be be canceled by assigning bosonic gauge transfor-

mations to the deformation and top-form potentials. However, it is not obvious that the

gauge transformations determined like this coincide with those derived from the general

formalism, which is valid for the full hierarchy of p–forms in generic dimension. In fact, by

inspecting closure of the supersymmetry algebra it has already been pointed out in [27] that

the gauge transformations receive modifications when applied to a specific model. Here we

are going to derive the full bosonic gauge symmetries for three-dimensional gauged max-

imal supergravity directly by requiring invariance of the Lagrangian (1.1). In particular,

we will find that the closure is only on-shell.

Moreover, we are going to compare the resulting symmetries with those predicted by

E11. Since the latter does not give rise to the embedding tensor, but only to its dual

deformation potential, naively this would require to take the ungauged limit, i.e. to set the

embedding tensor equal to zero.1 However, we will see that in this limit terms survive in

the transformation rules that are not predicted by E11. Instead, we will define a different

limit, in which the symmetries precisely match and which, moreover, has the advantage

that all p–forms but the top-form survive in the action. We will also see that in this limit

the bosonic gauge algebra reduces to an algebra that closes off-shell, in accordance with

the level decomposition of E11.

This note is organized as follows. In Section 2 we first introduce the maximal gauged

supergravity theory in three dimensions, following [17, 18, 27]. Then we give the complete

bosonic gauge transformations of all p–form potentials and show that the bosonic gauge

algebra closes on-shell. In the next section we perform the level decomposition of E11 and

show how the result obtained agrees with a particular limit of the gauged supergravity

result discussed in Section 2. In this limit the on-shell closed gauge algebra reduces to an

off-shell closed one. Finally, in the conclusions we comment about the consequences of our

results for a Kac-Moody approach to gauged supergravity in general.

2. Gauged supergravity in D = 3

In this section we give a brief review of gauged maximal supergravity in D = 3 [17, 18, 27].

1Recently, a scheme has been proposed to include the embedding tensor via a further extension of E11

[28]. Here we will not explore this possibility.
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In the first subsection we will introduce the Lagrangian and the embedding tensor. In the

following subsection we will introduce an equivalent formulation [27], in which the non-

propagating 2-form and 3-form fields predicted by E11 appear, and determine their bosonic

gauge symmetries.

2.1 The Lagrangian and the embedding tensor

The propagating bosonic degrees of freedom of maximal supergravity in D = 3 consist

of 128 scalar fields parameterizing the coset space E8(8)/SO(16). Besides, there are the

topological metric and, in gauged supergravity, Chern-Simons vectors. The 128 scalars

are encoded in the E8(8) valued matrix VM
A, where M,A, . . . = 1, . . . , 248 denote adjoint

indices of E8(8). We indicate by letters from the middle and the beginning of the alphabet

‘curved’ indices corresponding the global left action and ‘flat’ indices corresponding to the

local right action, respectively. The scalars enter the Lagrangian via the non-compact part

of the Maurer-Cartan forms

V−1DµV =
1

2
QIJ

µ XIJ + PA
µ Y A , (2.1)

which we wrote according to the SO(16) decomposition 248 = 120 ⊕ 128. Here XIJ

denote the SO(16) generators, with vector indices I, J, . . . = 1, . . . , 16, and Y A are the

non-compact generators transforming as spinors under SO(16), i.e. with spinor indices

A,B, . . . = 1, . . . , 128.2

In order for the Maurer-Cartan forms to be invariant under the local transformations

δV = ĝ(x)V , ĝ ∈ g0 ⊂ e8(8) , (2.2)

we introduced a gauge-covariant derivative,

V−1DµV = V−1∂µV − gAµ
MΘMN (V−1tNV) , (2.3)

where g is the gauge coupling constant. The symmetric tensor ΘMN is the embedding

tensor, which encodes the embedding of the gauge group G0 into the global symmetry

group E8(8). More precisely, the gauge algebra g0 is spanned by

XM = ΘMN tN , (2.4)

in which tM denote the global e8(8) symmetry generators with structure constants fMN
K.

In particular, the dimension of g0 is given by the rank of ΘMN . In this formalism, the

gauging takes a fully E8(8) covariant form, since all indices are E8(8) indices. Nevertheless,

the duality group is no longer a symmetry due to the fact that the constant Θ cannot

transform under E8(8). Rather, it acts as a projector, which breaks the symmetry down to

the gauge group G0 in (2.4).3

2Our E8(8) conventions are as in [18]. For other decompositions of E8(8) and their application to maximal

gauged supergravity see [29 – 31].
3Alternatively, one could say that E8(8) transforms one theory into another theory with different values

of the constant Θ.
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The gauged supergravity is described by the Lagrangian

Lg = −
1

4
eR +

1

4
ePµAPµA − eV

−
1

4
gεµνρAµ

MΘMN

(

∂νAρ
N −

1

3
gΘKSfNS

LAν
KAρ

L

)

,
(2.5)

where we ignored the fermionic terms. The scalar potential V is completely determined by

Θ via the so-called T-tensor,4

TA|B = VM
AV

N
BΘMN . (2.6)

Explicitly, one has

V = −
1

8
g2

(

AIJ
1 AIJ

1 −
1

2
AIȦ

2 AIȦ
2

)

, (2.7)

where

AIJ
1 =

8

7
θδIJ +

1

7
TIK|JK , AIȦ

2 = −
1

7
ΓJ

AȦ
TIJ |A . (2.8)

Here θ ≡ 1
248ηMNΘMN = 1

248ηABTA|B with the Cartan-Killing metric ηMN . The par-

ticular combinations A1 and A2 in (2.8) also enter the supersymmetry variations of the

fermions [18]. In the following we give a reformulation of the scalar potential in terms of

the E8(8) matrix GMN = VM
AV

N
BδAB. Using the inverse of the relations (2.8) [18], we

find5

V =
1

32
g2GMN ,KLΘMNΘKL , (2.9)

where

GMN ,KL =
1

14
GMKGNL + GMKηNL −

3

14
ηMKηNL −

4

6727
ηMN ηKL . (2.10)

Note that the Chern-Simons term in (2.5) has the effect that varying with respect to

the gauge fields Aµ
M one obtains a duality relation between the vectors and scalars,

e−1εµνρΘMNFνρ
N = −2ΘMNVN

APµA ≡ −2ΘMNJµN . (2.11)

Here we introduced the current Jµ
M, which in the ungauged theory is the Noether current

corresponding to the global E8(8) symmetry. However, in the gauged theory this symmetry

is broken, and therefore the covariant conservation is violated by terms of order O(g)

induced by the scalar potential,

Dµ

(

eJµM
)

= O(g) . (2.12)

4Following [27] we use a vertical bar to distinguish between the two indices of T .
5For performing the required gamma matrix calculations we used the Mathematica package GAMMA

[32].
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We emphasize that (2.11) is not the ‘naive’ duality relation in that both sides appear

projected by the embedding tensor. Consequently, only those vector fields participating in

the gauging enter (2.11), which therefore cannot be used to eliminate the full 248 vector

fields in terms of the scalars. As has been noted in [27], there is one ‘extra’ gauge symmetry

related to the duality relation,

δχAµ
M = ξν

χ

(

Fµν
M + J̃µν

M
)

, (2.13)

where we defined the Hodge dual J̃µν
M = eεµνρJ

ρM of the current in (2.11). Due to

the missing contraction with ΘMN , this is not an equations-of-motion symmetry, but

nevertheless leaves the action invariant. Though (2.13) seems to be necessary for closure of

the supersymmetry algebra [27], we will not encounter this symmetry any further in this

paper.

The Lagrangian (2.5) is invariant under the gauge transformations (2.2) and the fol-

lowing gauge transformations of the vector potentials

δAµ
M = DµΛM ≡ ∂µΛM − gfMN

KΘNLAµ
LΛK , (2.14)

where the gauge parameter is related to the transformation (2.2) via ĝ = gΛMΘMN tN .

Even though (2.14) seems to describe a 248-dimensional local symmetry, it is actually more

subtle, since the gauge vectors Aµ
M and their variations appear in the Lagrangian always

contracted with the embedding tensor, which in turn reduces the number of independent

vector fields to dimG0 = rank(Θ). Moreover, the embedding tensor has to satisfy a number

of constraints in order for the action to be invariant under the various symmetries. First

of all, consistency with local supersymmetry implies a linear constraint on ΘMN : a priori

it takes values in the symmetric tensor product

(248 ⊗ 248)sym = 1 ⊕ 3875 ⊕ 27000 , (2.15)

but supersymmetry requires that only the underlined representations appear. Note that

the singlet component of the embedding tensor corresponds to a gauging of the full E8(8)

duality group. In the following we will denote symmetrization in two adjoint indices M,N

and subsequent projecting away the 27000 representation by 〈MN〉, e.g.

ΘMN = Θ〈MN〉 , (2.16)

where the explicit form of the projector has been determined in [34].

Secondly, invariance of the embedding tensor (and thus gauge invariance of the action

(2.5) under (2.14)), requires the quadratic constraint [18]

QMN ,P ≡ ΘKPΘL(MfKL
N ) = 0 . (2.17)

From this definition one infers that the quadratic constraint satisfies

Q(MN ,P) = 0 , ηMNQMN ,P = 0 . (2.18)

– 5 –
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Note that for GL(n) groups the first condition would imply that Q lives in an irreducible

representation.6 However, this does not hold for E8(8), and the representation content of

(2.17) can be analyzed as follows [27]. Due to the linear constraint on Θ, the symmetric

indices of QMN ,P will be in 3875, where the absence of the singlet follows by the second

equation in (2.18). Naively the quadratic constraint (2.17) takes therefore values in

3875 ⊗ 248 = 248 ⊕ 3875 ⊕ 30380 ⊕ 147250 ⊕ 779247 . (2.19)

However, the first condition in (2.18) implies that all representations contained in the totally

symmetric tensor product (248 ⊗ 248 ⊗ 248)sym will be absent. This in turn reduces the

irreducible representations of QMN ,P to those underlined in (2.19). By abuse of notation

we will denote the projector onto these representations also by brackets 〈 〉, but note that

its explicit form is not required for our analysis.

2.2 Deformation and top-form potentials

We will now present an equivalent reformulation of the gauged supergravity Lagrangian

(2.5), in which so-called deformation and top-form potentials appear. This turns out to

be necessary in order to match the spectrum predicted by E11. Formally, this can be

understood as follows. As we noted above, the gauged supergravity is not invariant under

E8(8), since as ‘coupling constants’, the ΘMN do not transform under the duality group.

Promoting the embedding tensor to a dynamical, i.e. space-time dependent field ΘMN (x),

such that it transforms under global rotations according to its index structure, gives back

the full E8(8) invariance. However, this violates the supersymmetry and gauge invariance

by terms proportional to ∂µΘMN . This can be compensated by adding a 2-form potential

to the action, and by assigning appropriate supersymmetry and gauge variations to it.

Moreover, the quadratic constraint (2.17) on ΘMN can be implemented on-shell by means

of a Lagrange multiplier term containing a top-form (3-form) potential. In total we extend

the action to [27, 15]

Ltot = Lg +
1

4
gεµνρDµΘMNBνρ

MN −
1

6
g2ΘKPΘL(MfKL

N )ε
µνρCµνρ

MN ,P , (2.20)

where the embedding tensor now satisfies only the linear constraint. Consequently, the de-

formation potential takes values in 1⊕ 3875, while the top-form lives in 3875 ⊕ 147250,

in accordance with (2.19). We have defined a formal covariant derivative DµΘMN as

DµΘMN = ∂µΘMN − 2gAµ
PΘKPΘL(MfKL

N ) . (2.21)

The combination DµΘMN is strictly speaking not a covariant derivative. It would be the

covariant derivative if ΘMN would transform under the gauge group according to its index

structure. However, it is convenient to set up the calculation using a basis of gauge trans-

formations in which the embedding tensor is gauge-invariant, δΛΘMN = 0. This can always

be achieved by redefining the gauge transformations with an extra equation of motion sym-

metry involving the embedding tensor and the top-form potential. In fact, the coefficient

6The projector which implements this condition reads X〈MN ,P〉 = 2
3
(X(MN ),P

− XP(M,N )).

– 6 –
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of the A term in (2.21) can be arbitrarily changed by a redefinition of the top-form po-

tential in which the 3-form Cµνρ
MN ,P is shifted by terms proportional to B[µν

〈MNAρ]
P〉.

In general, there are several equivalent ways to present the gauge transformations that are

all related via redefinitions of fields/parameters and/or adding further equations of motion

symmetries. This will be of relevance when comparing our results with the ones predicted

by E11, see the next section. Note that the equations of motion of Bµν
MN and Cµνρ

MN ,P

give back the constancy of ΘMN and the quadratic constraints.

Using a particular choice of basis we now wish to determine the gauge transformations

of B and C, which are required for the gauge invariance of the action (2.20). (For their

supersymmetry transformations see [27].) First of all, the Chern-Simons term varies as

δΛLCS = −
1

4
gεµνρDµΘMNDνΛ

MAρ
N (2.22)

+
1

6
g2εµνρΘKPΘL(MfKL

N )Aµ
PAν

MDρΛ
N .

Also the scalar-kinetic term is no longer gauge-invariant, since the PA
µ vary according to

δΛPA
µ = gDµΘMNΛMVNA . (2.23)

In addition we have to remember the variation of Aµ
M inside the derivative DµΘMN . This

gives a contribution proportional to DΛB and the quadratic constraint and can therefore

be canceled by an extra variation of the top-form. Finally, the T-tensor transforms as

δTA|B = −2gQMN ,PV
M

AV
N

BΛP , (2.24)

and, consequently, the scalar potential varies into the quadratic constraint. Collecting

these terms, the non-invariance of the Lagrangian can be compensated by introducing the

following transformation rules

δBµν
MN = D[µΛ〈MAν]

N〉 − Λ〈MJ̃µν
N〉 , (2.25)

δCµνρ
MN ,P = −3D[µΛ〈PBνρ]

MN〉 + A[µ
〈PAν

MDρ]Λ
N〉

+
1

16
geεµνρΛ

〈P

(

−
1

7
GM|K|GN〉L − GM|K|ηN〉L

)

ΘKL .

At this point let us note again that the explicit form of the projectors indicated in (2.25)

is not required, since in the variation of the Lagrangian these terms are always multiplied

by ∂µΘMN or the quadratic constraint, and so their projection is manifest.

Next we are going to determine the gauge variations of B and C under their own

parameter, Λµ and Λµν , respectively. We first consider the gauge transformations with

parameter Λµ. Defining δBµν
MN = D[µΛν]

MN does not leave (2.20) invariant, since the

– 7 –
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‘covariant’ derivatives Dµ do not commute.7 Rather one finds the variation

δ

(

1

4
gεµνρDµΘMNBνρ

MN

)

=
1

8
gεµνρΛµ

MN [Dν ,Dρ]ΘMN (2.26)

= −
1

4
g2εµνρΛµ

MNFνρ
PΘKPΘL(MfKL

N )

+
1

2
g2εµνρΛµ

MNAν
P(DρΘKP)ΘL(MfKL

N )

+
1

2
g3εµνρΘPQΘR(KfQR

L)ΘSMfSL
NΛµ

MNAν
PAρ

K .

To compensate these we add a Stückelberg like shift transformation to the gauge vectors,

δ′Aµ
M = −gΘN (KfMN

L)Λµ
KL. The Chern-Simons term then picks up an additional

variation, which precisely cancels the variation in (2.26) proportional to the field strength.

Apart from that, the PA
µ vary as

δPA
µ = g2ΘMNΘP(KfMP

L)Λµ
KLVNA , (2.27)

while the variation of Aµ
M inside the derivative DµΘMN also gives rise to a term propor-

tional to the quadratic constraint, which both can be absorbed into an extra transformation

of C.

We next consider the gauge symmetry of the top-form, δCµνρ
MN ,K = D[µΛνρ]

MN ,P .

The action transforms into a total derivative and terms proportional to DµΘMN . The

latter can be compensated by a shift transformation of B under Λµν . This establishes the

gauge-invariance of the action with respect to Λµν .

Summarizing, we have shown that the bosonic gauge transformations that leave the

action corresponding to the Lagrangian (2.20) invariant are given by

δAµ
M = DµΛM − gΘNKfMN

LΛµ
KL , (2.28)

δBµν
MN = D[µΛν]

MN + δA[µ
〈MAν]

N〉 − Λ〈MJ̃µν
N〉

+
2

3
gΘKLfK〈M

P

(

Λµν
|LP|,N〉 − Λµν

N〉P,L
)

,

δCµνρ
MN ,P = D[µΛνρ]

MN ,P − 3 δA[µ
〈PBνρ]

MN〉 + A[µ
〈PAν

MδAρ]
N〉

+
3

2
Λ[µ

〈MN J̃νρ]
P〉 +

1

16
geεµνρΛ

〈P

(

−
1

7
GM|K|GN〉L − GM|K|ηN〉L

)

ΘKL .

As a consistency check we verify the closure of the gauge algebra. We first consider

the [1 ,1 ] commutator. Here we indicate the generators associated to the corresponding

p–forms with 1 , 2 and 3 and their gauge variation with δ(p). We find
[

δ
(1)
Λ , δ

(1)
Σ

]

Aµ
M =

(

δ
(1)

Λ̃
+ δ

(2)

Λ̃
+ δ

(3)

Λ̃

)

Aµ
M , (2.29)

[

δ
(1)
Λ , δ

(1)
Σ

]

Bµν
MN =

(

δ
(1)

Λ̃
+ δ

(2)

Λ̃
+ δ

(3)

Λ̃

)

Bµν
MN

+gfMK
PΘKL

(

Fµν
L + J̃µν

L
)

Λ[PΣN ] ,

[

δ
(1)
Λ , δ

(1)
Σ

]

Cµνρ
MN ,P =

(

δ
(1)

Λ̃
+ δ

(2)

Λ̃
+ δ

(3)

Λ̃

)

Cµνρ
MN ,P ,

7It turns out that using the derivative Dµ in this expression corresponds to a particular choice of basis

for the parameter Λµν .
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where the transformation parameters are given by

Λ̃M = −gΘNKfMN
LΛ[KΣL] , (2.30)

Λ̃µ
MN = DµΛ〈MΣN〉 − DµΣ〈MΛN〉 ,

Λ̃µν
MN ,P = 3Λ〈MJ̃µν

NΣP〉 .

We note that in deriving (2.29) we have made use of the scalar equations of motion, the

constancy of the embedding tensor and the quadratic constraint, i.e. the closure is only

on-shell. For simplicity, we do not give these terms explicitly in the above expressions,

but just indicate that the on-shell closure on the deformation potential is guaranteed by

the duality relation (2.11) between vectors and scalars. One may wonder whether it is

possible to close this algebra off-shell by using the extra symmetries discussed in [27] (see

eq. (2.13)). However, on the deformation potential they act as δχBµν
MN ∼ Aµ

MδχAν
N

and are therefore not of the form required by (2.29) — apart from the fact that it would

still not be clear how to eliminate the other equations of motion. We conclude that there is

no straightforward way to achieve an off-shell closure, though the possibility of introducing

auxiliary fields, etc., might be worth to investigate.

The only other non-trivial commutator to consider is [1 ,2 ]. We find, for instance,
[

δ
(1)
Λ , δ

(2)
Σ

]

Bµν
MN = δ

(3)

Σ̃
Bµν

MN , (2.31)

where

Σ̃µν
MN ,P = 3Σ[µ

〈MNDν]Λ
P〉 . (2.32)

This concludes our discussion of the commutator algebra.

We end this section by considering the duality relation between the deformation po-

tential and the embedding tensor. Varying the action corresponding to (2.20) with respect

to ΘMN yields the following ‘duality relation’:

e−1εµνρGµνρ
MN + 2Aµ

〈MJµN〉 =
1

4
gGMN ,KLΘKL . (2.33)

Here we have defined

Gµνρ
MN =D[µBνρ]

MN + A[µ
〈M∂νAρ]

N〉 − 2gΘKLfK〈M
PA[µ

N〉Bνρ]
LP

−
2

3
gΘKLfK〈M

P

(

Cµνρ
|LP|,N〉 − Cµνρ

N〉P,L − A[µ
N〉Aν

LAρ]
P
)

.
(2.34)

Let us stress that G is not a gauge-covariant field strength. For instance, ignoring the scalar

potential and its variation for the moment, one finds that the left-hand side of (2.33) varies

under ΛM as

δΛ

(

εµνρGµνρ
MN + 2eAµ

〈MJµN〉
)

= −2Λ〈MDµ

(

eJµN〉
)

(2.35)

+gεµνρfK〈M
PAµ

N〉ΘKL

(

Fνρ
L + J̃νρ

L
)

ΛP ,

i.e. it rotates into the scalar equations of motion and the duality relation. In other words,

despite the fact that G does not transform ‘covariantly’, the entire set of bosonic field

equations is gauge-invariant. This concludes our discussion about three-dimensional gauged

supergravity.
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Figure 1: E11 decomposed under SL(3, R)×E8(8). The white nodes represent SL(3, R), the gray

nodes E8(8), and the black node is ‘disabled’.

3. E11 and extended ungauged supergravity

In this section we are going to make the correspondence between ungauged supergravity

and the Kac-Moody algebra E11 more precise. A priori there is a puzzle here since the

Θ = 0 limit of gauged supergravity leads to an ungauged theory in which the deformation

and top-form potentials have disappeared from the Lagrangian. On the other hand, these

same potentials are contained in the level decomposition of E11. In this section we will show

that a specific extended ungauged limit of gauged supergravity exists whose symmetries

on all p–form potentials (p = 0, 1, 2, 3) are in precise correspondence to the non-linearly

realized symmetries of (a truncation of) E11, and which still contains all forms up to the

top-form potentials. In the next subsection we first discuss the non-linear realization of

E11. In the following subsection we will discuss how the same result can be obtained by

taking a limit of gauged supergravity.

3.1 Non-linear realization of E11

We first consider the non-linear realization of E11. In the case at hand we have to perform

a level decomposition with respect to SL(3, R) × E8(8) (see figure 1), which are the space-

time and duality subgroups. We restrict to the p–form algebra, which means that we

truncate to generators that are totally antisymmetric in their ‘space-time’ indices µ, ν, ρ

[15]. Specifically, this gives rise to generators Xµ
M, Y µν

MN , and Zµνρ
MN ,P at level 1, 2

and 3, whose representations are given in table 1 [14]. We note that the level 2 generator is

in precise correspondence with the linear constraint found for gauged supergravity, while

the level 3 generator is consistent with the quadratic constraint. However, E11 allows for

an additional top-form in 248, which is not related to a quadratic constraint.8 Here, these

will not be considered further, and by abuse of notation we will denote the generator in

which this additional 248 has been projected out also by Zµνρ
MN ,P . The non-trivial Lie

brackets read

[Xµ
M,Xν

N ] = 2Y µν
MN , (3.1)

[Y µν
MN ,Xρ

P ] = 3Zµνρ
MN ,P .

In order to determine the non-linearly realized E11 symmetry in this truncation, we

have to introduce a group valued coset representative,

V = exp
(

Aµ
MXµ

M + Bµν
MNY µν

MN + Cµνρ
MN ,PZµνρ

MN ,P

)

. (3.2)

8Such top-forms could be related to space-time filling branes. Similar appearances of extra top-forms

have been encountered in D = 9, 10 [15, 14].
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Level SL(3, R) × E8(8) representation Generator

1 (3,248) Xµ
M

2 (3̄,1 ⊕ 3875) Y µν
MN

3 (1,248 ⊕ 3875 ⊕ 147250) Zµνρ
MN ,P

Table 1: SL(3, R) × E8(8) representations within E11 up to level 3, of which the SL(3, R) part is

totally antisymmetric.

Here we have chosen the Borel gauge, in which only positive level generators enter. The

action of the rigid symmetry group is given by

V → gVh−1(x) , g ∈ E11 , (3.3)

where h(x) denotes a local transformation which, if necessary, restores the chosen gauge for

V. However, after the gauge-fixing to positive levels in (3.2), it is sufficient for our purpose

to consider the symmetry action by a group element truncated to positive level as well,

g = exp
(

Λµ
MXµ

M + Λµν
MNY µν

MN + Λµνρ
MN ,PZµνρ

MN ,P

)

. (3.4)

Consequently, a compensating local transformation is not required. Acting with (3.4) on

the coset representative (3.2), yields by use of the Baker-Campbell-Hausdorff formula and

the Lie algebra (3.1) the following global symmetry transformations

δAµ
M = Λµ

M ,

δBµν
MN = Λµν

MN + Λ[µ
〈MAν]

N〉 , (3.5)

δCµνρ
MN ,P = Λµνρ

MN ,P −
3

2
B[µν

〈MNΛρ]
P〉 +

3

2
Λµν

〈MNAρ
P〉 −

1

2
A[µ

〈MΛν
NAρ]

P〉 .

In the next section we will show that these symmetries can also be obtained in a specific

limit of supergravity.

3.2 Extended ungauged supergravity

In order to see the symmetry (3.5) in supergravity one has to consider a special ungauged

limit. More precisely, taking the standard limit to ungauged supergravity, g → 0, is

equivalent to setting the embedding tensor to zero. This in turn eliminates the 1-, 2- and

3-forms from the action and, consequently, makes the comparison with E11 problematic.

Moreover, from (2.28) one infers that in this naive limit scalar-dependent terms survive

in the transformation rules as, for instance, δΛBµν
MN = −Λ〈MJ̃µν

N〉. These are not

predicted by E11, and so one has to take a more subtle limit. To be concrete, we first

perform the following rescaling of the fields,

Aµ
M → g1/2Aµ

M ,

Bµν
MN → gBµν

MN , (3.6)

Cµνρ
MN ,P → g3/2Cµνρ

MN ,P ,
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and then take the limit g → 0. This yields the Lagrangian,

L = L0 −
1

4
εµνρΘMNG(0)

µνρ
MN , (3.7)

where L0 denotes the standard Lagrangian of ungauged supergravity. Here, G
(0)
µνρ

MN is

the g → 0 limit of Gµνρ
MN , given by

G(0)
µνρ

MN = ∂[µBνρ]
MN + A[µ

〈M∂νAρ]
N〉 . (3.8)

We note that, in contrast to the gauged expression in (2.34), this represents a gauge-

invariant field strength. The Lagrangian (3.7) is equivalent to standard ungauged su-

pergravity in that it merely represents an extension by topological 1- and 2-forms with

vanishing curvatures.9 To be more precise, the embedding tensor now acts as a Lagrange

multiplier that sets the curvature of the 2-form to zero, while the field equations for Aµ
M

imply that their (abelian) field strengths vanish.

Let us now turn to the symmetries that survive in this limit. Rescaling the symmetry

parameters as for the fields in (3.6), i.e. ΛM → g1/2ΛM, etc., yields the following limit of

the gauge symmetries (2.28),

δΛAµ
M = ∂µΛM , (3.9)

δΛBµν
MN = ∂[µΛν]

MN + ∂[µΛ〈MAν]
N〉 ,

δΛĈµνρ
MN ,P = ∂[µΛνρ]

MN ,P−
3

2
∂[µΛ〈PBνρ]

MN〉+
3

2
∂[µΛν

〈MNAρ]
P〉−

1

2
A[µ

〈PAν
M∂ρ]Λ

N〉 .

Here we performed the field redefinition

Ĉµνρ
MN ,P = Cµνρ

MN ,P +
3

2
A[µ

〈PBνρ]
MN〉 . (3.10)

In particular we observe that the scalar-dependent terms drop out. Specifying the gauge

parameters to linear space-time dependence according to

ΛM = xρΛρ
M , Λµ

MN = xρΛρµ
MN , Λµν

MN ,P = xρΛρµν
MN ,P , (3.11)

gives precisely the global symmetry in (3.5) predicted by E11.

We note that in the g → 0 limit the top-form vanishes from the Lagrangian but does

have a well-defined gauge transformation rule which is in accordance with the E11 algebra.

Therefore only the (truncated) E10 subalgebra is non-trivially realized at the level of the

Lagrangian. Finally, in the g → 0 limit, the gauge algebra closes off-shell, as it should

be since it matches the E11 results, which a priori do not contain information about the

equations of motion.

9Recently, a similar use of topological fields in the context of the Kac-Moody approach has been made

in [35].
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4. Conclusions

In this note we compared a level decomposition based on the very extended Kac-Moody

algebra E11 with a particular limit of maximal three-dimensional gauged supergravity.

Before taking the limit, the gauged supergravity theory contains besides scalars and vectors

also deformation and top-form potentials on which the gauge algebra, which we determined

explicitly, closes on-shell. After taking the limit we are left with a Lagrangian containing

scalars, vectors and deformation potentials on which the gauge algebra closes off-shell.

This gauge algebra allows for a rigid truncation, which in turn realizes an E10 subalgebra

of E11. To obtain the full E11 prediction one must include the top-form potentials which,

however, do not occur in the Lagrangian.10 It is intriguing to note that the lowest-order

terms in the variation δC of the top-form as predicted by E11 are, from the supergravity

side, required for canceling the higher-order terms in Θ in the variation of the action. So

in this sense, E11 does know about the gauging.

It is natural to expect that the need for a rescaling in order to match the E11 prediction

for the deformation and top-form potentials appears in any dimension. In particular, it

would be interesting to verify this in the case of D = 5 analyzed in [28]. However, there

the full gauge transformations have been given up to the 3-forms, for which a rescaling is

not required. Thus, a comparison with our results must await an exhaustive analysis of

the 4- and 5-forms in D = 5.

Moreover, it would be interesting to extend, for three dimensions, the relation between

extended ungauged supergravity and E10 and/or E11 to the gauged case. Since, in going

from the ungauged to the gauged case, the closure of the gauge algebra goes from off-shell

to on-shell we expect that dynamics will play a non-trivial role in this extension. Recently,

for the case of E11, a proposal for such a relationship in the gauged case has been made

[28]. It would be interesting to see wether this proposal yields the details and in particular

the on-shell closure of the three-dimensional gauge algebra. Since dynamics is involved it

would be interesting to also consider the relationship from the point of view of the E10

coset model [3, 2, 4] where dynamics is naturally included via the sigma model equations

of motion. This would extend the analysis of [33] for D = 10 massive supergravity to a

case where the gauging of a symmetry is involved. We hope to report on the results of

such an investigation in the nearby future [36].
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